Surrogacy assessment using principal stratification with multivariate normal and Gaussian copula models
نویسندگان
چکیده
منابع مشابه
Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal.
In clinical trials, a surrogate outcome variable (S) can be measured before the outcome of interest (T) and may provide early information regarding the treatment (Z) effect on T. Using the principal surrogacy framework introduced by Frangakis and Rubin (2002. Principal stratification in causal inference. Biometrics 58, 21-29), we consider an approach that has a causal interpretation and develop...
متن کاملCopula Gaussian Graphical Models *
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompass many stud...
متن کاملAccommodating missingness when assessing surrogacy via principal stratification.
BACKGROUND When an outcome of interest in a clinical trial is late-occurring or difficult to obtain, surrogate markers can extract information about the effect of the treatment on the outcome of interest. Understanding associations between the causal effect (CE) of treatment on the outcome and the causal effect of treatment on the surrogate is critical to understanding the value of a surrogate ...
متن کاملRisk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models
H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...
متن کاملBayesian modeling of Dupuytren disease using copula Gaussian graphical models
Dupuytren disease is a fibroproliferative disorder with unknown etiology that often progresses and eventually can cause permanent contractures of the affected fingers. Most of the researches on severity of the disease and the phenotype of this disease are observational studies without concrete statistical analyses. There is a lack of multivariate analysis for the disease taking into account pot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Clinical Trials
سال: 2014
ISSN: 1740-7745,1740-7753
DOI: 10.1177/1740774514561046